Product Category	Industry Standard or Test Results			Product		Tool Required for Un-mating	Cross Sectional Area of Conductor $\mathrm{mm}^{2}\left(\mathrm{in}^{2}\right)$	$30^{\circ} \mathrm{C}$ Rise 55° total	$\bar{\pi}$ 010 20 40 0 0 0 0 0 0 0 0 0	$\begin{gathered} 45^{\circ} \mathrm{C} \\ \text { Rise } \\ 70^{\circ} \text { total } \end{gathered}$		$60^{\circ} \mathrm{C}$ Rise 85° total			$90^{\circ} \mathrm{C}$ Rise $115^{\circ} \text { total }$
Connector	Test Results	Rebling	BFT or XFT	1,000 amp rating with one	50 MCM cable per terminal	Wrench	390 (.601)	1,020		1,270		1,470			1,690
Connector	Test Results	Rebling	BFT or XFT	750 amp rating with one	50 MCM cable per terminal	Wrench	390 (.601)	900		1,100		1,250			1,440
Connector	Test Results	Rebling	MFT	500 amp rating with one	50 MCM cable per terminal	Wrench	240 (.372)	520		630		730			840
Connector	Test Results	Rebling	LFT or SFT	250 amp rating with one	4/0 cable per terminal	Wrench	130 (.196)	280		340		390			450
Connector	Test Results	Anderson	SB350	with one	4/0 cable per terminal	None	130 (.196)	280		340		390			450
Connector	Test Results	Rebling	7010+7020	with one	4/0 cable per terminal	None	75 (.110)	270		330		380			430
Connector	Test Results	Rebling	TFT	100 amp rating with one	2 AWG cable per terminal	Wrench	40 (.062)	115		150		170			190
Cable	Test Results	750 MCM	Cable	7,600 strands of 30 gauge			380 (.597)	1,010		1,250		1,430			
Cable	Test Results	450 MCM	Cable	4,500 strands of 30 gauge			230 (.353)	550		660		770			
Cable	Test Results	250 MCM	Cable	2,500 strands of 30 gauge			130 (.196)	360		450		520			
Cable	Test Results	4/0	Cable	2,060 strands of 30 gauge			105 (.162)	290		350		400			
Cable	Test Results	3/0	Cable	1,590 strands of 30 gauge			80 (.125)	260		310		350			
Cable	Test Results	2/0	Cable	1,280 strands of 30 gauge			65 (.101)	240		290		335			
Cable	Test Results	1/0	Cable	1,000 strands of 30 gauge			50 (.079)	230		270		315			
Cable	Test Results	2 AWG	Cable	625 strands of 30 gauge			32 (.049)	120		160		180			
Cable	Test Results	4 AWG	Cable	375 strands of 30 gauge			19 (.029)	90		105		120			
Cable	Test Results	6 AWG	Cable	260 strands of 30 gauge			13 (.020)	80		100		110			
Cable	Test Results	8 AWG	Cable	160 strands of 30 gauge			8 (.013)	75		90		105			
Cable	NEC/UL Standard	750 MCM	Cable	7,600 strands of 30 gauge			380 (.597)	400		475		535			
Cable	NEC/UL Standard	500 MCM	Cable	5,000 strands of 30 gauge			250 (.393)	320		380		430			
Cable	NEC/UL Standard	450 MCM	Cable	4,500 strands of 30 gauge			230 (.353)	300		355		405			
Cable	NEC/UL Standard	4/0	Cable	2,060 strands of 30 gauge			105 (.162)	195		230		260			
Cable	NEC/UL Standard	2/0	Cable	1,280 strands of 30 gauge			65 (.101)	145		175		195			
Cable	NEC/UL Standard	1/0	Cable	1,000 strands of 30 gauge			50 (.079)	125		150		170			
Cable	NEC/UL Standard	2 AWG	Cable	600 strands of 30 gauge			30 (.047)	95		115		130			
Cable	NEC/UL Standard	6 AWG	Cable	250 strands of 30 gauge			13 (.020)	55		65		75			

 Step 1: determine the temperature rise your equipment design can tolerate. The higher the temperature rise your equipment can tolerate, the lower the cost of cable and connectors.
Step 2: determine if your equipment needs to comply with UL, NEC, IEC or other standards

 Step 5: determine if your equipment needs a separable electrical connection. Separable connections are more expensive and less reliable than permanent (soldered or welded) connections.

 Step 7: select the lowest cost connector which: does not exceed the temperature rise your equipment can tolerate at your steady state current and meets your un-mating tool requirements.

 61984 can vary by a factor of 2.5 . The current vs temperature rise characteristics of your application may be significantly different than the assumptions used in NEC, UL or IEC standards.

Cross Sectional Area of Conductor: the cross sectional areas of the stranded cables shown above were calculated using the diameter of one 30 gauge wire $=0.01000$ inches

